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Data Management and Processing 

Zack Jaggers 

22 April, 2020 
handout and files: http://zjaggers.com/resources/DataMgmtWorkshop/ 

Intro 

This workshop:  how to work with the data you’ve collected, and make it analyzable.  

• Keeping the end state in mind, from the beginning 
- Ultimately, you want your data to be in a state that can be submitted to analysis. 
- So, at every step, you’ll want to think about  

o what that ideal end state is, and  
o how to help the data you collect resemble or be able to get to that state. 

• Pragmatics: the real world 
- The data you collect won’t be in that state already. (i.e., why this workshop exists)  
- So, at every step, you’ll want to make sure that 

o you have the pieces of information you’ll need in your analysis, 
o you can trace it to originals (in case things are separated, altered, or moved), and 
o you can easily connect pieces to each other that will need to be connected. 

Foreshadow/summary 

• the goal state: one dataset 
- unique rows per observation (data points) 
- unique columns per factor of interest (ways to splice/dice/group the observations)  
- including, while preferably limited to, all observations of interest 

• getting there 
- Know your factors of interest and identify their values for each observation, somewhere. 

o usually factors of the stimulus, study condition, and subject 
- Have reference datasets where these factors are treated as observations w/ info. 

o Make these just like another dataset — spreadsheet format. 
o Keep a separate record of how you’ve labeled and moved your data — can be prose. 

- Combine and restructure your raw data (as necessary) to reach the goal state. 

Tools 

• best practices for tracking information, considering ease for joining it all later on 
• binding/concatenating:  joining complementary sets of observations of same info structure 
• joining/merging complementary sets of information that observation sets don’t fully specify 
• recoding, separating:  dealing (w/in-script) with labels that weren’t ideal 
• subsetting/filtering:  limiting dataset only to observations of interest 
• reshaping:  e.g., multiple observations per row in starting point (e.g., experiment output)  
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1. Compiling your data — tracking all the information to be combined 

Often, your data output doesn’t already have all the information of interest to your analysis neatly 
lumped into one tidy spreadsheet. 

• You probably want to analyze the observations from multiple subjects together, but they’re 
likely in different output spreadsheets. 

• And those spreadsheets might not have all the information you want for each observation: 
- Say you have acoustic measurements of subjects’ utterances from a Praat script. 
- But, the script output didn’t include information like subject’s language background, sex. 
- And, if you were using particular audio stimuli to elicit the productions, you might care 

about aspects of those stimuli, which the script might also not have given you. 

 

... 

 

What do you do? Hopefully, you’ve thought ahead some about being able to track this information 
and combine it into a unified dataset in the future: 

• ID:  Ideally each subject has a separate ID (see ‘subject’ column above), so when you combine 
their observations together, you can still tell them apart. 
- This way, you can associate each Praat script observation with its subject. 
- There’s a way you can get this from the filename, which probably is or at least includes 

the subject ID. (Most Praat scripts produce this. See ID/filename extraction below.) 

• Subject info tracking:  Ideally, you gathered the information you care about (e.g., language 
background, sex) for each subject. 
- And ideally, you have this associated with the same ID that your other observations are 

associated with. 
o Now (whew!), you know that even if you don’t have all that information together 

right now, it’s possible to, say, create new info columns for each 
observation in the output from your Praat script, and fill them in 
with this info you have stored. 

- Better/easier yet, if you have this information stored in a structure 
just like another dataset, you can automate that process. 
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• The same would go for stimulus information:  If it will be relevant to your analysis, but it 
wasn’t included in your observation output...  
- You should have a way to ID the stimulus (maybe it’s word, or audio stimulus filename). 
- And you should be able to track which one corresponds to each observation utterance: 

o Maybe this is by having segmented the word 
and stored the info of all words segmented as a 
dataset to refer to. 

 
o Maybe this is by having kept a record of the order of stimulus 

presentation each subject was exposed to. In this case, you’ll 
need to keep both subject and observation order in mind 
when combining this information. (This is also totally doable, 
so long as you’ve kept records, in the form of datasets:  see 
below.) 

Takeaway:   

• Your data might not all come out ready-to-analyze. But your life will be easier the more you 
make sure you track relevant information, and think about how you’ll plug it into analysis. 
- Observation responses/measurements 
- Subject info 
- Stimulus info 
- Condition or exposure presentation info 
- ***Ways of connecting all of these things.*** 

• Tips 
- The fewer chain links, the better. 

o (e.g., How would you identify which ‘segment’ the subject was producing for each 
observation from the Praat script output in the first spreadsheets above?) 

- Format the complementary pieces of info like separate datasets to be combined (see 
“Combining your data” below). 

- Try to keep factor columns consistent across these datasets (e.g., ‘subject’, ‘stimFile’). 
- If there’s anything else you need to note, but you’re having a hard time formatting it as a 

dataset, have a separate document where you can write it out as prose: e.g.,  
o work progress 
o instruction guides 
o logs of file inventory, changes, or movements 
o writeup of questions or issues w/ data processing and how they were resolved 
o keys for codes or abbreviations used in datasets 

• R 
- For the next steps, I’m going to walk you through some R tools and commands. This isn’t 

meant as a full-on intro to R, but a data management tutorial using R. Most everything 
should be doable with just basic R and RStudio, and the tidyverse package. 
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2. Combining your data — concatenating and merging 

Why did you want your separate info sets structured like datasets? So you can easily combine them! 

• First, what about all those different Praat script outputs from different subjects? You want 
those together in one dataset if you’re going to compare subjects with each other. 
- You can row-bind data sets, vertically stacking them if they have identical column 

structures. I’ve provided a script (CombineFiles.R) that combines all datasets located in 
one directory. The main content of it is duplicated here:  

#Set working directory to that where script resides 
sourcedir <- dirname(rstudioapi::getSourceEditorContext()$path) 
setwd(sourcedir) 
 
#identify "...csv" files in working directory 
filelist <- list.files(path = getwd(), pattern = "*.csv") 
#read and combine, storing filename as first column 
d <- data_frame(filename = filelist) %>% #new dataframe with filenames 
  mutate(file_contents = map(filename, #ready expansion: one contents cell 
per filename 
                             ~ read_csv(file.path(getwd(), .))) #read 
contents into nested cells 
  ) %>% 
  unnest(.) #unnest dataframe cells into one combined dataframe 
 
#Save output as csv in the directory 
write.csv(d, file = "CombinedOutput.csv", row.names=FALSE) 

• So now, the observations of subjects 1147, 121, etc. will be combined in one dataset, but you 
still have ‘subject’ as a column that uses their subject IDs to keep their observations distinct. 

nb:  This script actually also includes a new ‘filename’ column, in case you didn’t have something like ‘subject’ before. 

A note on file storage and folder structure: 

• This script and others like it work best if your files are all in the same folder/‘directory’. 
- Ideally, that’s why your filenames also have information that uniquely distinguishes the 

files from each other, and you’ve set up your experiment or analysis scripts to store and 
label files in this way. 

- But, say, you have separate folders, rather than files for each subject, and multiple files 
per subject that would otherwise have identical file names (see image 
example). 
o If you add a recursive=TRUE argument to the list.files( ) 

command, you can search subdirectories and store filepath 
information as well:  e.g., 121/training/block1.csv  

o (Below we’ll talk about parsing and splitting column info.) 
o You’ll want to make sure that your folder structures, labels, and 

contents within are consistent if taking this approach. 
- Other datasets containing complementary reference information, like 

subject info or stimulus info, should be stored outside the directory 
housing the observation files you want to combine. 

Filling out your observations with complementary information: 
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• Now you can join your datasets:  Observations can be combined with complementary 
information you stored about subjects and stimuli.  

(R base calls this ‘merge’; dplyr and SQL call this ‘join’) 

- Using the left_join( ) command from dplyr, you can add to a dataset of observations 
(first argument) columns of complementary information (second argument) so long as 
there is a matching ID column. 

> d <- left_join(d.praatObsvs, d.subjInfo) 
Joining, by = “subject” 

o Notice how, above, the matching ‘subject’ column between the two datasets was 
found automatically. You can manually specify it with a third by=“ ” argument.  

(You can also manually specify if the columns to be matched across datasets differ in their titles; 
but it’s much better if you’ve been consistent from the start.) 

• So now, subject info columns are added, with the values matching their subject IDs. 

 

... 

 

Chain-joins: 

• Notice that, for our dataset, we have the utterance number of each observation per speaker.  
- Or, if you don’t, so long as you’re sure your rows are in the right order: 

d <- d %>% group_by(subject) %>% mutate(number = row_number()) 

• We also have a separate record per subject of the order of stimuli that elicited each utterance 
(‘stimFile’).  

• We have a record with more stimulus details; but it’s separate from the stimulus presentation 
record, and it’s not directly traceable to the full observation dataset:  It doesn’t share any ID 
columns with it. 
- Combine your stimulus presentation records per subject, row-binding them like 

observation datasets. 
- Join them with the additional stimulus information, giving them more detail. 

 

... 

 

• Now you can join this dataset with the dataset of Praat script observations... 
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Joining by multiple conditions: 

• Notice that you’ll need both subject ID and utterance number to match each utterance 
observation’s Praat script measurements with its stimulus details: i.e., 
- It’s not the case that each subject saw only one stimulus;  
- and it’s not the case that stimulus presentation order (‘number’ and how it matched with 

‘stimFile’) was the same for every subject. 

• You can specify a set of multiple columns as criteria for your join( ) command: 
d <- left_join(d, d.subjStimOrder, by=c(“subject”, “number”)) 

nb:  Be mindful about which dataset you’re specifying as the left argument. That one is treated as the base that the other is being 
added to, and it shouldn’t be missing observations of interest. (See online guides about dplyr and SQL join types.) 

3. Recoding and separating values 

In actuality, the data I showed you above had already been pre-cleaned a bit.  
Remember:  Keep the ideal in mind and aim for it. 

Instead of having subject IDs neatly provided by the Praat script, the output looked more like this (a 
similar dataset). It just spat out the filename shared by both the .wav and .textgrid files we 
segmented (ID###_T#_DAY#), and appended a bunch of details about the script at the end. 

 
Rows in this sample are just sorted first by ‘number’, then ‘filename’, so you can see different filenames: 

d <- d %>% arrange(number, filename) 

• As recommended above, these filenames were informative to keep the files distinct: 
- ID### = subject ID 
- T2 vs. T5 = pretest vs. posttest 
- DAY1 vs. DAY2 (you get it) 

• So we could safely put them in the same directory and combine them (as described above).  
• Now, we can make use of these informative variables embedded in the filenames... 

Separating values into distinct columns: 

• We thought ahead (You should too.) and separated each informative variable in our 
filenames by “_”:  a common, useful practice. This is why... 

d <- d %>% separate(filename,c(“subject”,“phase”,“day”),“_”,extra=“drop”)  
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Saying extra= “merge” and specifying a fourth column name would have kept all the extra material in one column and ignored 

further “_” separations:  useful for keeping around a ‘comments’ column (e.g., segmenting and noting comments w/ “_”). 

- This separation method would also be useful for column values like 
“121/training/block1.csv” — if you didn’t have unique filenames with your files all 
in one place but, instead, had used folder structure to distinguish your files that you 
combined. 

- (And dplyr’s unite() command is a useful counterpart to separate(). It can be useful 
for cases like PsychoPy data, combining multiple response columns that are distinct only 
because they are in a different condition block, which may already be noted elsewhere in 
the row.) 

Though see an introduction to pivot() below, converting column info into useful row material. 

 

Recoding values: 

• Now, it would just be nice if our values for pretest vs. posttest phase were a little clearer... 
d <- d %>% mutate(phase= recode(phase, T2= “pretest”, T5= “posttest”))  

 
- You could also have performed these commands at the same time for the same result: 

d <- d %>%  
    separate(filename,c(“subject”,“phase”,“day”),“_”,extra=“drop”) %>% 
    mutate(phase= recode(phase, T2= “pretest”, T5= “posttest”)) 

dplyr’s %>% syntax allows you to immediately carry over the results of one command  
as the state and argument for subsequent commands. 
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4. Filtering/subsetting your data 

Say you want to only look at some of the data you collected. 

• Conditions of interest 
- For example, Say we want to just look at Day 1 of our experiment. The following 

command will limit our dataset to just those observations. 
d <- d %>% filter(day == “DAY1”) 

- Or, Say we want to look at Day 1, and also posttest from Day2:  i.e., 
o We’ll include all Day 1 data (pre- and post-test), and all posttest data. 

d <- d %>% filter(day == “DAY1” | phase == “posttest”) 

Translation:  Limit data to rows where day = “DAY1” or ( | ) where phase = “posttest”. 

- Or, Say we want to look at only Day 1’s posttest results:  Either of the following 
commands will achieve this. 

d <- d %>% filter(day == “DAY1” & phase == “posttest”) 

Translation: Limit data to rows where day = “DAY1” and phase = “posttest”. 

d <- d %>% filter(day == “DAY1”, phase == “posttest”) 

Translation: Limit data to rows where day = “DAY1”. Also limit data to rows where phase = “posttest”. 

- Or, Say we want to look at 2-day learning:  i.e., Say we want to compare Day 1’s pretest 
and Day2’s posttest. 

d <- d %>% filter( (day==“DAY1” & phase==“pretest”) | (day==“DAY2” &        
    phase==“posttest”) )       Can you provide the translation? 

There’s a whole range of ways that you can filter your data, which I won’t fully expound here. 

• You can use syntax like < and > to limit your data to ranges of numeric factor values. 
- useful for things like excluding outliers 

• You can use syntax like %in% c(“...”, “...”) to limit your data to values that are within 
a pre-specified set. 
- useful for narrowing your dataset to only certain categories  

o such as looking at only a certain set of sounds, while you’ve segmented and coded for 
a wide variety of sounds 

• Or you can use != if you know you just need to exclude rows matching a particular value.  
Just browse online for dplyr functions and logical operators. 

Sometimes you want to keep your data, but group it. 

• There are other useful functions like group_by() and summarize(), which you can look up 
and learn more about. These can be useful for performing functions on your data that depend 
on certain conditions: e.g., 
- creating a new variable (piped %>% before the mutate() function) dependent on criteria 
- collapsing condition groups into averages 
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5. Reshaping your data 

Sometimes you’ll be forced to deal with a data output that’s very from the ideal state to work with. 

Qualtrics and PsychoPy, for example, are two platforms that we use to get our data, but we don’t 
have much say on what the output looks like. 

For example, here is a Qualtrics study with a randomized set of stimulus exposures that we used the 
Loop & Merge tool to automatically plug in from a spreadsheet we uploaded. 

See my Qualtrics Workshop handout, and a specific example on using a randomized Loop & Merge, and tracking display order 
with invisible questions:  

http://zjaggers.com/resources/QualtricsWorkshop/ 

http://zjaggers.com/resources/QualtricsWorkshop/Append1_LoopMergeWBlockBreaks.pdf 

In the example experiment below, I’ve  

• created a question that will display a stimulus (Field 1) and elicit a response {a,b,c,d} 
• created an invisible question named ‘stimFile’ that will record a response as if the subject 

entered the contents of Field 2 
• created another invisible question named ‘loopNum’ that will record a response as if the 

subject entered the current loop number 

 

I ran through this short demo experiment a couple times to show you the output: 

...  

• You get a bunch of ID info, and for some reason 3 header rows, then your observation info. 
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- First, you can get rid of your first two ‘rows’, keeping just what R processed as the actual 
header and everything else:  in this case, 2 separate subjects. 

d <- d %>% slice(3:n()) 

Translation: Slice your data to keep only that starting from row 3 to the end (the row numbered with the total row count). 

- Also, you can select() certain columns if you know only some are of interest. 
o You could run the 

command 
colnames(d) to 
see a numbered list 
of column names.  

o Then you could use 
d <- d %>% select(1,9:53) to pick columns 1 and 9-53. 

o Or you could identify a set like colsOfInterest and either include them by 
selecting that set or exclude them by selecting the negated set: e.g.,  
colsOfInterest <- c(“ResponseId”, “RecordedDate”, “UserLanguage”) 
d <- d %>% select(colsOfInterest)  #to include; Or... 
d <- d %>% select(-colsOfInterest) #to exclude 

Pop quiz: How does select() differ from filter()? 

- Let’s say we selected the colsOfInterest we identified as subject ID info, and cols 18-
53, the ones with observation info. 

Now, let’s look at the observation info, past the subject ID info: 

 

• For each loop, there are 3 columns:  one for each question that had a ‘response’. 
- Each column starts with the row number of the loop. 

nb: This is not the contents of Field 1. This would have been “1_”, “2_”, etc. even if Field 1 of the L&M were “wug”, “schwa”, etc. 

- After “_” comes the question name. 

• The cell contents provide the ‘responses’ stored (including automatic-because-hidden ones). 
- The ‘stimResponse’ column provides the actual answer to the multiple choice question. 
- ‘stimFile’ records Field 2: This is how we know the columns go in order of rows. 
- ‘loopNum’ records which loop pass in the randomized order this L&M row was activated. 

Really, each of these triplets represents the factor values of a single observation per participant: 

• There should just be columns for ‘stimResponse’, ‘stimFile’, and ‘loopNum’. 
• And the contents of the ‘1_’, ‘2_’, ‘3_’, etc. groups should be stacked on top of each other 

- ...while repeating all of the subject ID info in each row. 

Here’s where we use dplyr’s pivot( ) function: 

• We’re wanting to ‘lengthen’ our dataset in the end. 
- But to do that, we’re actually going to reeeally lengthen it, and then widen it back some. 

Below, I’ll break this up into two parts. Here’s the full command in advance: 
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d <- d %>%  
  pivot_longer(-colsOfInterest, 
    names_to = c("LMRow", "variable"),  
    names_sep = "_") %>%  
  pivot_wider(names_from = "variable",  
    values_from = "value")  

• In the first part, we identify the columns that we want repeated as ID info for every 
observation. This will take the value of each cell in our data and make up only one (very 
long) column. But we keep track of what variable each value belonged to by extracting that 
from the original column name, as well as the L&M row. 

  pivot_longer(-colsOfInterest, #constant/ID info cols 
    names_to = c("LMRow", "variable"), #destination of original col name 
    names_sep = "_") #how original col name divided in 2 

 

• Now we’ve split up the info originally in the columns grouped and repeated per observation, 
while still keeping it all traceable. In the second part, we regroup the observation values by 
turning their variables back into columns again, this time leaving L&M rows as separate 
observation rows (like they should be) rather than column groups. 

pivot_wider(names_from = "variable", #restore cols w/out LM row numbers 
    values_from = "value") #source col of each new col*row’s value 

Remember/notice how we were able to pipe the results of the first part right into the second part. 

 

6. Conclusion 

• This by no means covers all the tools for data management and processing. 
• The takeaways are that... 

- You can process your data even when it’s not in an ideal state. 
- It probably won’t be in an ideal state no matter what you do. 
- There’s a lot you can and should do to help your data be manageable. 

o It’ll be a lot easier to get to that ideal state if you’ve kept it in mind and implemented 
measures along the way that’ll facilitate these processes. 


